11y^2-19y-10=4y^2

Simple and best practice solution for 11y^2-19y-10=4y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11y^2-19y-10=4y^2 equation:



11y^2-19y-10=4y^2
We move all terms to the left:
11y^2-19y-10-(4y^2)=0
determiningTheFunctionDomain 11y^2-4y^2-19y-10=0
We add all the numbers together, and all the variables
7y^2-19y-10=0
a = 7; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·7·(-10)
Δ = 641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{641}}{2*7}=\frac{19-\sqrt{641}}{14} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{641}}{2*7}=\frac{19+\sqrt{641}}{14} $

See similar equations:

| 4^1-8x=5^x | | 50-17.50=5x | | 1+4x+7=2(2x+4) | | (2y+4)+7y=49 | | 9x-7+3x+1=90 | | 37=3(n-1)+2n | | (3x+4)(x+6)=0 | | 2/(x-1)-(1/4)=3/(x+1) | | 3(x-4)=7x-12-4x | | 2/5(10+5x)=2x-11+3/5x | | 164+14x =15x +14  | | X(x+1)=30000 | | 45=2b+3(17-b) | | 2+n=93 | | 17=2b+3(45-b) | | 50-5x=17.50 | | 7x-9=-8x+1-x | | 17=2b+3(17-b) | | 1/2x+6=7-1/2 | | 5x-2(-5+2x)=14 | | 17=(45-x)/2+x/3 | | 5x+17.50=50 | | G(x)=10^x | | x+3x+-17+7x+10=180 | | 0.8x=2700 | | 0=-16t^2+22.1 | | -3(a-2)+1=20 | | -2=6+2y | | 21x-2+7x-10=180 | | 9=x+x+x | | 3(x−1)+2=8 | | 3x+2=4x-+ |

Equations solver categories